This paper studies the data sparsity problem in multi-view learning. To solve data sparsity problem in multiview ratings, we propose a generic architecture of deep transfer tensor factorization (DTTF) by integrating deep learning and cross-domain tensor factorization, where the side information is embedded to provide effective compensation for the tensor sparsity. Then we exhibit instantiation of our architecture by combining stacked denoising autoencoder (SDAE) and CANDECOMP/ PARAFAC (CP) tensor factorization in both source and target domains, where the side information of both users and items is tightly coupled with the sparse multi-view ratings and the latent factors are learned based on the joint optimization. We tightly couple the multi-view ratings and the side information to improve cross-domain tensor factorization based recommendations. Experimental results on real-world datasets demonstrate that our DTTF schemes outperform state-of-the-art methods on multi-view rating predictions.


翻译:本文研究了多视图学习中的数据宽度问题。 为了解决多视图评级中的数据宽度问题, 我们提出一个深度传输强度因子化(DTTF)的通用架构, 整合深层学习和跨部数度因子化, 将侧面信息嵌入其中, 以有效补偿高度因子化。 然后我们展示了我们架构的即时化, 将堆叠的拆卸自动编码器( SDAE) 和 CANDECOMP/ PARAFAC (CP) 和源域和目标域的拉力化结合起来, 用户和项目的侧面信息与稀薄的多视图评级紧密结合, 以及基于联合优化学习的潜在因素。 我们紧密结合了多视图评级和侧面信息, 以改善跨部数度因子化的建议。 真实世界数据集的实验结果显示, 我们的DTF计划在多视图评级预测中都超越了最先进的方法 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年10月22日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
13+阅读 · 2021年10月22日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员