Federated learning (FL) has demonstrated great potential in revolutionizing distributed machine learning, and tremendous efforts have been made to extend it beyond the original focus on supervised learning. Among many directions, federated contextual bandits (FCB), a pivotal integration of FL and sequential decision-making, has garnered significant attention in recent years. Despite substantial progress, existing FCB approaches have largely employed their tailored FL components, often deviating from the canonical FL framework. Consequently, even renowned algorithms like FedAvg remain under-utilized in FCB, let alone other FL advancements. Motivated by this disconnection, this work takes one step towards building a tighter relationship between the canonical FL study and the investigations on FCB. In particular, a novel FCB design, termed FedIGW, is proposed to leverage a regression-based CB algorithm, i.e., inverse gap weighting. Compared with existing FCB approaches, the proposed FedIGW design can better harness the entire spectrum of FL innovations, which is concretely reflected as (1) flexible incorporation of (both existing and forthcoming) FL protocols; (2) modularized plug-in of FL analyses in performance guarantees; (3) seamless integration of FL appendages (such as personalization, robustness, and privacy). We substantiate these claims through rigorous theoretical analyses and empirical evaluations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Peeking Behind the Curtains of Residual Learning
Arxiv
0+阅读 · 2024年2月13日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员