Accurately modeling and inferring solutions to time-dependent partial differential equations (PDEs) over extended horizons remains a core challenge in scientific machine learning. Traditional full rollout (FR) methods, which predict entire trajectories in one pass, often fail to capture the causal dependencies and generalize poorly outside the training time horizon. Autoregressive (AR) approaches, evolving the system step by step, suffer from error accumulation, limiting long-term accuracy. These shortcomings limit the long-term accuracy and reliability of both strategies. To address these issues, we introduce the Physics-Informed Time-Integrated Deep Operator Network (PITI-DeepONet), a dual-output architecture trained via fully physics-informed or hybrid physics- and data-driven objectives to ensure stable, accurate long-term evolution well beyond the training horizon. Instead of forecasting future states, the network learns the time-derivative operator from the current state, integrating it using classical time-stepping schemes to advance the solution in time. Additionally, the framework can leverage residual monitoring during inference to estimate prediction quality and detect when the system transitions outside the training domain. Applied to benchmark problems, PITI-DeepONet shows improved accuracy over extended inference time horizons when compared to traditional methods. Mean relative $\mathcal{L}_2$ errors reduced by 84% (vs. FR) and 79% (vs. AR) for the one-dimensional heat equation; by 87% (vs. FR) and 98% (vs. AR) for the one-dimensional Burgers equation; and by 42% (vs. FR) and 89% (vs. AR) for the two-dimensional Allen-Cahn equation. By moving beyond classic FR and AR schemes, PITI-DeepONet paves the way for more reliable, long-term integration of complex, time-dependent PDEs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员