MapReduce (MR) frameworks for maximizing monotone, submodular functions subject to a cardinality constraint (SMCC) have currently only been shown to work with linear-adaptive (non-parallelizable) algorithms, that require large number of distributions in order to utilize the available processors, thus resulting in severe restrictions on the cardinality constraint in addition to limited scalability. Low-adaptive algorithms do not currently satisfy the requirements of these distributed MR frameworks, thereby limiting their performance. We study the SMCC problem in a distributed setting and propose the first MR algorithms with sublinear adaptive complexity. Our algorithms, R-DASH, T-DASH and G-DASH provide $0.316-\varepsilon$, $3/8 -\varepsilon$, and $1 - 1/e -\varepsilon$ approximation ratios, respectively, with nearly optimal adaptive complexity and nearly linear time complexity. Additionally, we provide a framework to increase, under some mild assumptions, the maximum permissible cardinality constraint from $O( n / \ell^2)$ of prior MR algorithms to $O( n / \ell )$, where $n$ is the data size and $\ell$ is the number of machines; under a stronger condition on the objective function, we increase the maximum constraint value to $n$. Finally, we provide empirical evidence to demonstrate that our sublinear-adaptive, distributed algorithms provide orders of magnitude faster runtime compared to current state-of-the-art distributed algorithms.


翻译:最大单一调值、受基本调值制约的亚模量功能(SMCC)框架目前只显示与线性调整(不可分)算法合作,这些算法需要大量分配,以便利用现有的处理器,因此除了可缩放性有限外,还严重限制了基本限制。低调算法目前无法满足这些分布式MR框架的要求,从而限制了它们的业绩。我们在分布式设置中研究员工和管理当局协调会的问题,并提出第一个具有亚线性适应性复杂性的MR算法。我们的算法、R-DASH、T-DASH和G-DASH分别提供0.316-Narepsilon美元、3/8-\varepslon美元和1-1-e-varepslon$近似比,几乎是最佳的适应性复杂度和近线性时间。此外,我们提供了一个框架,可以根据一些温和假设,从美元(n/ell2)的可允许性基本调值算法算算算算算算出第一个MUR值的MR-ralal-altialal-alalalalalal-al-al-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员