Researchers have invested considerable effort into ensuring that large language models (LLMs) align with human values, using various training techniques, such as instruction tuning and Reinforcement Learning from Human or AI Feedback (RLHF/RLAIF), to guard against text unsafety. However, these defenses remain incredibly vulnerable to some jailbreak attacks, which can cause the model to become overly defensive to sensitive topics or still generate harmful content, leaving the model performance particularly fragile. Therefore, to comprehensively study text safety and output robustness, we propose a latent jailbreak prompt dataset, each involving malicious instruction embedding. Specifically, we instruct the model to complete a regular task, such as translation, where the text to be translated contains malicious instructions. To further analyze the safety and robustness, we design a hierarchical annotation framework. We present a systematic analysis of the safety and robustness of LLMs concerning the position of explicit normal instructions, word replacement (verbs in explicit normal instructions, target groups in malicious instructions, cue words in malicious instructions), and instruction replacement (different explicit normal instructions). Our results show that current LLMs not only have a preference for certain instruction verbs, but also exhibit different jailbreak rates for different instruction verbs in explicit normal instructions. In other words, the probability of generating unsafe content by the model will be reinforced to varying degrees depending on the instruction verb in explicit normal instructions. Code and data are available at https://github.com/qiuhuachuan/latent-jailbreak.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员