Graph Neural Networks (GNNs) have become fundamental in semi-supervised learning for graph representation, leveraging their ability to capture complex node relationships. A recent trend in GNN research focuses on adaptive multi-hop structure learning, moving beyond fixed-hop aggregation to more flexible and dynamic neighborhood selection. While GAMLP \citep{Zhang_2022} employs separate MLP layers for each multi-hop domain and ImprovingTE \citep{Yao2023ImprovingTE} enhances this by injecting contextualized substructure information, these methods still rely heavily on predefined sampling strategies, which may limit their ability to generalize and maintain stable accuracy. To address these limitations, we propose an \textbf{adaptive reconstruction framework} that dynamically refines multi-hop structure learning. Inspired by "coreset selection" \citep{guo2022deepcore}, our approach adaptively \textbf{reconstructs} node neighborhoods to optimize message passing, ensuring more \textbf{effective and context-aware information flow} across the graph. To further enhance structural robustness, we introduce two key modules: the \textbf{Distance Recomputator} and the \textbf{Topology Reconstructor} (\textcolor{blue}{DRTR}). The Distance Recomputator \textbf{reassesses and recalibrates} node distances based on adaptive graph properties, leading to \textbf{improved node embeddings} that better reflect latent relationships. Meanwhile, the Topology Reconstructor \textbf{dynamically refines local graph structures}, enabling the model to \textbf{adapt to evolving graph topologies} and mitigate the impact of noise and mislabeled data. Empirical evaluations demonstrate that our \textbf{adaptive reconstruction framework} achieves \textbf{significant improvements} over existing multi-hop-based models, providing more \textbf{stable and accurate} performance in various graph learning benchmarks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员