Coded distributed computing (CDC), proposed by Li et al., offers significant potential for reducing the communication load in MapReduce computing systems. In the setting of the cascaded CDC that consisting of $K$ nodes, $N$ input files, and $Q$ output functions, the objective is to compute each output function through $s\geq 1$ nodes with a computation load $r\geq 1$, enabling the application of coding techniques during the Shuffle phase to achieve minimum communication load. However, a significant limitation in most existing cascaded CDC schemes is their demand for splitting the original data into an exponentially growing number of input files and requiring an exponentially large number of output functions, which imposes stringent requirements for implementation. In this paper, we focus on the cascaded case of $K/s\in\mathbb{N}$, deliberately designing the strategy of data placement and output functions assignment based on a grouping method, such that a low-complexity Shuffle strategy is achievable. The main advantages of the proposed scheme include: 1) the multicast gains equal to $(r+s-1)(1-1/s)$ and $r+s-1$ which is approximate to $r+s-1$ when $s$ is relatively large, and the communication load is quite approximate to or surprisingly better than the optimal state-of-the-art scheme proposed by Li et al.; 2) the proposed scheme requires significantly less number of input files and output functions; 3) all the operations are implemented over the minimum binary field $\mathbb{F}_2$ in the one-shot fashion. Finally, we derive a new converse bound for the cascaded CDC framework, under the given strategies of data placement and output functions assignment. We demonstrate that the communication load of the proposed scheme is order optimal within a factor of $2$; and is also approximately optimal when $K$ is sufficiently large for a given $r$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员