While security vulnerabilities in traditional Deep Neural Networks (DNNs) have been extensively studied, the susceptibility of Spiking Neural Networks (SNNs) to adversarial attacks remains mostly underexplored. Until now, the mechanisms to inject backdoors into SNN models have been limited to digital scenarios; thus, we present the first evaluation of backdoor attacks in real-world environments. We begin by assessing the applicability of existing digital backdoor attacks and identifying their limitations for deployment in physical environments. To address each of the found limitations, we present three novel backdoor attack methods on SNNs, i.e., Framed, Strobing, and Flashy Backdoor. We also assess the effectiveness of traditional backdoor procedures and defenses adapted for SNNs, such as pruning, fine-tuning, and fine-pruning. The results show that while these procedures and defenses can mitigate some attacks, they often fail against stronger methods like Flashy Backdoor or sacrifice too much clean accuracy, rendering the models unusable. Overall, all our methods can achieve up to a 100% Attack Success Rate while maintaining high clean accuracy in every tested dataset. Additionally, we evaluate the stealthiness of the triggers with commonly used metrics, finding them highly stealthy. Thus, we propose new alternatives more suited for identifying poisoned samples in these scenarios. Our results show that further research is needed to ensure the security of SNN-based systems against backdoor attacks and their safe application in real-world scenarios. The code, experiments, and results are available in our repository.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员