We consider the Shortest Odd Path problem, where given an undirected graph $G$, a weight function on its edges, and two vertices $s$ and $t$ in $G$, the aim is to find an $(s,t)$-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the Shortest Odd Path problem had been open for 20 years, and was recently shown to be NP-hard. We give a polynomial-time algorithm for the special case when the weight function is conservative and the set $E^-$ of negative-weight edges forms a single tree. Our algorithm exploits the strong connection between Shortest Odd Path and the problem of finding two internally vertex-disjoint paths between two terminals in an undirected edge-weighted graph. It also relies on solving an intermediary problem variant called Shortest Parity-Constrained Odd Path where for certain edges we have parity constraints on their position along the path. Also, we exhibit two FPT algorithms for solving Shortest Odd Path in graphs with conservative weight functions. The first FPT algorithm is parameterized by $|E^-|$, the number of negative edges, or more generally, by the maximum size of a matching in the subgraph of $G$ spanned by $E^-$. Our second FPT algorithm is parameterized by the treewidth of $G$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员