A Chernoff-type distribution is a nonnormal distribution defined by the slope at zero of the greatest convex minorant of a two-sided Brownian motion with a polynomial drift. While a Chernoff-type distribution is known to appear as the distributional limit in many non-regular statistical estimation problems, the accuracy of Chernoff-type approximations has remained largely unknown. In the present paper, we tackle this problem and derive Berry-Esseen bounds for Chernoff-type limit distributions in the canonical non-regular statistical estimation problem of isotonic (or monotone) regression. The derived Berry-Esseen bounds match those of the oracle local average estimator with optimal bandwidth in each scenario of possibly different Chernoff-type asymptotics, up to multiplicative logarithmic factors. Our method of proof differs from standard techniques on Berry-Esseen bounds, and relies on new localization techniques in isotonic regression and an anti-concentration inequality for the supremum of a Brownian motion with a Lipschitz drift.


翻译:切尔诺夫型分布是一种非正常的分布方式,由双面布朗运动的最大锥形微小点零点的斜坡以多元漂移来定义。虽然已知切尔诺夫型分布方式在许多非经常性统计估计问题中是分布极限,但切尔诺夫型近似的准确性仍然基本上未知。在本文件中,我们处理这一问题,并得出切尔诺夫型极限分布的Berry-Esseen界限,在异调(或单体内)回归的峡谷非常规统计估计问题中,产生Berry-Esseen 型分布。衍生的Berry-Esesearn 界限与甲骨文平均估量器的界限相匹配,在每一种可能不同的切诺夫型静脉图情景中都使用最佳的带宽度,最高可乘性对数系数。我们的证据方法不同于Berry-Eseseen边框的标准技术,在异调回归(或单体内)中依赖新的局部回归技术,并在布朗运动的顶部流流中采用抗浓缩不平等。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
非凸优化与统计学,89页ppt,普林斯顿Yuxin Chen博士
专知会员服务
103+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
非凸优化与统计学,89页ppt,普林斯顿Yuxin Chen博士
专知会员服务
103+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员