In a paper of 1976, Rauzy studied two complexity notions, $\underline{\beta}$ and $\overline{\beta}$, for infinite sequences over a finite alphabet. The function $\underline{\beta}$ is maximum exactly in the Borel normal sequences and $\overline{\beta}$ is minimum exactly in the sequences that, when added to any Borel normal sequence, the result is also Borel normal. Although the definition of $\underline{\beta}$ and $\overline{\beta}$ do not involve finite-state automata, we establish some connections between them and the lower $\underline{\rm dim}$ and upper $\overline{\rm dim}$ finite-state dimension (or other equivalent notions like finite-state compression ratio, aligned-entropy or cumulative log-loss of finite-state predictors). We show tight lower and upper bounds on $\underline{\rm dim}$ and $\overline{\rm dim}$ as functions of $\underline{\beta}$ and $\overline{\beta}$, respectively. In particular this implies that sequences with $\overline{\rm dim}$ zero are exactly the ones that that, when added to any Borel normal sequence, the result is also Borel normal. We also show that the finite-state dimensions $\underline{\rm dim}$ and $\overline{\rm dim}$ are essentially subadditive. We need two technical tools that are of independent interest. One is the family of local finite-state automata, which are automata whose memory consists of the last $k$ read symbols for some fixed integer $k$. We show that compressors based on local finite-state automata are as good as standard finite-state compressors. The other one is a notion of finite-state relational (non-deterministic) compressor, which can compress an input in several ways provided the input can always be recovered from any of its outputs. We show that such compressors cannot compress more than standard (deterministic) finite-state compressors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
11+阅读 · 2018年7月31日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员