The problems of \emph{verification} and \emph{realizability} are two central themes in the analysis of reactive systems. When multiagent systems are considered, these problems have natural analogues of existence (nonemptiness) of pure-strategy Nash equilibria and verification of pure-strategy Nash equilibria. Recently, this body of work has begun to include finite-horizon temporal goals. With finite-horizon temporal goals, there is a natural hierarchy of goal representation, ranging from deterministic finite automata (DFA), to nondeterministic finite automata (NFA), and to alternating finite automata (AFA), with a worst-case exponential gap between each successive representation. Previous works showed that the realizability problem with DFA goals was PSPACE-complete, while the realizability problem with temporal logic goals is in 2EXPTIME. In this work, we study both the realizability and the verification problems with respect to various goal representations. We first show that the realizability problem with NFA goals is EXPTIME-complete and with AFA goals is 2EXPTIME-complete, thus establishing strict complexity gaps between realizability with respect to DFA, NFA, and AFA goals. We then contrast these complexity gaps with the complexity of the verification problem, where we show that verification with respect to DFAs, NFA, and AFA goals is PSPACE-complete.


翻译:\ emph{ 核查} 和 emph{ 真实性 的问题是分析反应系统的两个中心主题。 当考虑多试剂系统时,这些问题自然具有纯战略Nash 平衡(非空性)的存在(非空性)和纯战略Nash 平衡(纯战略Nash 平衡)的核查的相似性。 最近, 这项工作已开始包括限定和顺方时间目标。 在有限和顺方时间目标方面, 存在目标代表的自然等级, 从确定性的有限自动自动数据(DFA)到非确定性的有限自动数据(NFA), 以及交替有限的自动数据(AFA), 每一次代表之间都存在最差的指数差距。 以前的工作表明,DFA目标的可真实性问题已经完成, 而时间逻辑目标的可容性问题在2 EXPTIME。 我们研究了各种目标的可容性和核查问题。 我们首先表明,NFA目标的可真实性问题与不精确性(EFA- ) 的复杂性是真实性, 与我们无法核查目标之间, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月19日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员