We prove that the number of tangencies between the members of two families, each of which consists of $n$ pairwise disjoint curves, can be as large as $\Omega(n^{4/3})$. If the families are doubly-grounded, this is sharp. We also show that if the curves are required to be $x$-monotone, then the maximum number of tangencies is $\Theta(n\log n)$, which improves a result by Pach, Suk, and Treml.


翻译:我们证明,两个家庭的成员之间的时间差,每个家庭由双向脱节曲线组成,其数额可能与Omega(n ⁇ 4/3})美元一样大。如果这些家庭有双倍的缘故,情况就非常明显。我们还表明,如果曲线需要x美元,那么最多的时间差是$Theta(n\log n)美元,这改善了Pach、Suk和Treml的结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
54+阅读 · 2020年9月7日
MIT新书《强化学习与最优控制》
专知会员服务
282+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关主题
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
54+阅读 · 2020年9月7日
MIT新书《强化学习与最优控制》
专知会员服务
282+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员