We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution. We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution and design an efficient sequential sampling algorithm to learn the MPB when the parameter has a finite support. We derive the large deviations rate of the probability of falsely selecting the MPB and formulate an optimal computing budget allocation problem to find the rate-maximizing static sampling ratios. The problem is then relaxed to obtain a set of optimality conditions that are interpretable and computationally efficient to verify. We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases. Furthermore, we show that the empirical performances of the algorithms can be significantly improved by adopting the kernel ridge regression for mean estimation while achieving the same asymptotic convergence results. The algorithms are benchmarked against a state-of-the-art contextual R&S algorithm and demonstrated to have superior empirical performances.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员