Given a directed edge-weighted graph $G=(V, E)$ with beer vertices $B\subseteq V$, a beer path between two vertices $u$ and $v$ is a path between $u$ and $v$ that visits at least one beer vertex in $B$, and the beer distance between two vertices is the shortest length of beer paths. We consider \emph{indexing problems} on beer paths, that is, a graph is given a priori, and we construct some data structures (called indexes) for the graph. Then later, we are given two vertices, and we find the beer distance or beer path between them using the data structure. For such a scheme, efficient algorithms using indexes for the beer distance and beer path queries have been proposed for outerplanar graphs and interval graphs. For example, Bacic et al. (2021) present indexes with size $O(n)$ for outerplanar graphs and an algorithm using them that answers the beer distance between given two vertices in $O(\alpha(n))$ time, where $\alpha(\cdot)$ is the inverse Ackermann function; the performance is shown to be optimal. This paper proposes indexing data structures and algorithms for beer path queries on general graphs based on two types of graph decomposition: the tree decomposition and the triconnected component decomposition. We propose indexes with size $O(m+nr^2)$ based on the triconnected component decomposition, where $r$ is the size of the largest triconnected component. For a given query $u,v\in V$, our algorithm using the indexes can output the beer distance in query time $O(\alpha(m))$. In particular, our indexing data structures and algorithms achieve the optimal performance (the space and the query time) for series-parallel graphs, which is a wider class of outerplanar graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月1日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员