There have been extensive studies on solving differential equations using physics-informed neural networks. While this method has proven advantageous in many cases, a major criticism lies in its lack of analytical error bounds. Therefore, it is less credible than its traditional counterparts, such as the finite difference method. This paper shows that one can mathematically derive explicit error bounds for physics-informed neural networks trained on a class of linear systems of differential equations. More importantly, evaluating such error bounds only requires evaluating the differential equation residual infinity norm over the domain of interest. Our work shows a link between network residuals, which is known and used as loss function, and the absolute error of solution, which is generally unknown. Our approach is semi-phenomonological and independent of knowledge of the actual solution or the complexity or architecture of the network. Using the method of manufactured solution on linear ODEs and system of linear ODEs, we empirically verify the error evaluation algorithm and demonstrate that the actual error strictly lies within our derived bound.


翻译:对使用物理知情神经网络解决差异方程式进行了广泛的研究。虽然这种方法在许多情况中证明是有利的,但主要的批评在于它缺乏分析错误界限。因此,它不如传统的对口单位那么可信,例如有限差异法。本文表明,在数学上可以得出物理学知情神经网络的明显错误界限,这些网络受过不同方程式的线性系统的培训。更重要的是,评价这种错误界限只要求评价不同方程式在利益领域上的剩余无限性规范。我们的工作显示了网络剩余部分(已知并用作损失函数)与绝对的解决方案错误(通常不为人所知)之间的联系。我们的方法是半同体学的,独立于对实际解决方案或网络复杂性或结构的了解。我们使用线性代码和线性代码系统的制造解决方案的方法,对错误评价算法进行了实验性核查,并证明实际错误严格存在于我们所得的界限之内。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员