We investigate information-theoretic limits and design of communication under receiver quantization. Unlike most existing studies, this work is more focused on the impact of resolution reduction from high to low. We consider a standard transceiver architecture, which includes i.i.d. complex Gaussian codebook at the transmitter, and a symmetric quantizer cascaded with a nearest neighbor decoder at the receiver. Employing the generalized mutual information (GMI), an achievable rate under general quantization rules is obtained in an analytical form, which shows that the rate loss due to quantization is $\log\left(1+\gamma\mathsf{SNR}\right)$, where $\gamma$ is determined by thresholds and levels of the quantizer. Based on this result, the performance under uniform receiver quantization is analyzed comprehensively. We show that the front-end gain control, which determines the loading factor of quantization, has an increasing impact on performance as the resolution decreases. In particular, we prove that the unique loading factor that minimizes the MSE also maximizes the GMI, and the corresponding irreducible rate loss is given by $\log\left(1+\mathsf {mmse}\cdot\mathsf{SNR}\right)$, where mmse is the minimum MSE normalized by the variance of quantizer input, and is equal to the minimum of $\gamma$. A geometrical interpretation for the optimal uniform quantization at the receiver is further established. Moreover, by asymptotic analysis, we characterize the impact of biased gain control, showing how small rate losses decay to zero and providing rate approximations under large bias. From asymptotic expressions of the optimal loading factor and mmse, approximations and several per-bit rules for performance are also provided. Finally we discuss more types of receiver quantization and show that the consistency between achievable rate maximization and MSE minimization does not hold in general.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员