A distinction is often drawn between a model's ability to predict a label for an evaluation sample that is directly memorised from highly similar training samples versus an ability to predict the label via some method of generalisation. In the context of using Language Models for question-answering, discussion continues to occur as to the extent to which questions are answered through memorisation. We consider this issue for questions that would ideally be answered through reasoning over an associated context. We propose a method of identifying evaluation samples for which it is very unlikely our model would have memorised the answers. Our method is based on semantic similarity of input tokens and label tokens between training and evaluation samples. We show that our method offers advantages upon some prior approaches in that it is able to surface evaluation-train pairs that have overlap in either contiguous or discontiguous sequences of tokens. We use this method to identify unmemorisable subsets of our evaluation datasets. We train two Language Models in a multitask fashion whereby the second model differs from the first only in that it has two additional datasets added to the training regime that are designed to impart simple numerical reasoning strategies of a sort known to improve performance on some of our evaluation datasets but not on others. We then show that there is performance improvement between the two models on the unmemorisable subsets of the evaluation datasets that were expected to benefit from the additional training datasets. Specifically, performance on unmemorisable subsets of two of our evaluation datasets, DROP and ROPES significantly improves by 9.0%, and 25.7% respectively while other evaluation datasets have no significant change in performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员