Causal mediation analysis, pleiotropy analysis, and replication analysis are three highly popular genetic study designs. Although these analyses address different scientific questions, the underlying inference problems all involve large-scale testing of composite null hypotheses. The goal is to determine whether all null hypotheses - as opposed to at least one - in a set of individual tests should simultaneously be rejected. Various recent methodology has been proposed for the aforementioned situations, and an appealing empirical Bayes strategy is to apply the popular two-group model, calculating local false discovery rates (lfdr) for each set of hypotheses. However, such a strategy is difficult due to the need for multivariate density estimation. Furthermore, the multiple testing rules for the empirical Bayes lfdr approach and conventional frequentist z-statistics can disagree, which is troubling for a field that ubiquitously utilizes summary statistics. This work proposes a framework to unify two-group testing in genetic association composite null settings, the conditionally symmetric multidimensional Gaussian mixture model (csmGmm). The csmGmm is shown to demonstrate more robust operating characteristics than recently-proposed alternatives. Crucially, the csmGmm also offers strong interpretability guarantees by harmonizing lfdr and z-statistic testing rules. We extend the base csmGmm to cover each of the mediation, pleiotropy, and replication settings, and we prove that the lfdr z-statistic agreement holds in each situation. We apply the model to a collection of translational lung cancer genetic association studies that motivated this work.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员