Echocardiogram datasets enable training deep learning models to automate interpretation of cardiac ultrasound, thereby expanding access to accurate readings of diagnostically-useful images. However, the gender, sex, race, and ethnicity of the patients in these datasets are underreported and subgroup-specific predictive performance is unevaluated. These reporting deficiencies raise concerns about subgroup validity that must be studied and addressed before model deployment. In this paper, we show that current open echocardiogram datasets are unable to assuage subgroup validity concerns. We improve sociodemographic reporting for two datasets: TMED-2 and MIMIC-IV-ECHO. Analysis of six open datasets reveals no consideration of gender-diverse patients and insufficient patient counts for many racial and ethnic groups. We further perform an exploratory subgroup analysis of two published aortic stenosis detection models on TMED-2. We find insufficient evidence for subgroup validity for sex, racial, and ethnic subgroups. Our findings highlight that more data for underrepresented subgroups, improved demographic reporting, and subgroup-focused analyses are needed to prove subgroup validity in future work.


翻译:超声心动图数据集能够训练深度学习模型以自动化解读心脏超声图像,从而扩大对具有诊断价值的图像进行准确判读的可及性。然而,这些数据集中患者的性别、种族和民族信息报告不足,且未评估针对特定亚组的预测性能。这些报告缺陷引发了关于亚组有效性的担忧,必须在模型部署前加以研究和解决。本文表明,当前开放的超声心动图数据集无法缓解亚组有效性的担忧。我们改进了两个数据集(TMED-2和MIMIC-IV-ECHO)的社会人口统计学报告。对六个开放数据集的分析显示,未考虑性别多样化患者,且许多种族和民族群体的患者数量不足。我们进一步对TMED-2上两个已发布的主动脉瓣狭窄检测模型进行了探索性亚组分析。我们发现,对于性别、种族和民族亚组,缺乏足够的证据支持其亚组有效性。我们的研究结果强调,未来工作需要更多来自代表性不足亚组的数据、改进的人口统计学报告以及聚焦亚组的分析,以证明亚组有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员