A private information retrieval (PIR) scheme allows a client to retrieve a data item $x_i$ among $n$ items $x_1,x_2,...,x_n$ from $k$ servers, without revealing what $i$ is even when $t < k$ servers collude and try to learn $i$. Such a PIR scheme is said to be $t$-private. A PIR scheme is $v$-verifiable if the client can verify the correctness of the retrieved $x_i$ even when $v \leq k$ servers collude and try to fool the client by sending manipulated data. Most of the previous works in the literature on PIR assumed that $v < k$, leaving the case of all-colluding servers open. We propose a generic construction that combines a linear map commitment (LMC) and an arbitrary linear PIR scheme to produce a $k$-verifiable PIR scheme, termed a committed PIR scheme. Such a scheme guarantees that even in the worst scenario, when all servers are under the control of an attacker, although the privacy is unavoidably lost, the client won't be fooled into accepting an incorrect $x_i$. We demonstrate the practicality of our proposal by implementing the committed PIR schemes based on the Lai-Malavolta LMC and three well-known PIR schemes using the GMP library and \texttt{blst}, the current fastest C library for elliptic curve pairings.


翻译:私自信息检索( PIR) 计划允许客户在美元项目中从 $x_ 1,x_2,...x_n美元服务器上检索一个数据项目$x_i美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元.x_ 2,...x_n 美元 美元 从 美元 服务器上检索一个数据项目 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元, 美元 服务器 美元 美元 美元 的 美元 美元, 服务器 美元 的 美元 美元 美元 。 我们提议一个通用的构造, 将线性地图承诺( LMC ) 和 直线性 PIR 计划( 美元 ), 称为 承诺的 PIR 美元 计划 。 这种计划可以保证在最坏的情况下, 当所有服务器都受 图书馆 正确控制时, 的 CLBLM 计划 以 以 美元 以 以 美元 以 以 以 美元 以 以 以 以 以 以 以 以 以 美元 以 以 美元 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
45+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Differentially Private Synthetic Control
Arxiv
0+阅读 · 2023年3月24日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员