This monograph develops a unified, application-driven framework for kernel methods grounded in reproducing kernel Hilbert spaces (RKHS) and optimal transport (OT). Part I lays the theoretical and numerical foundations on positive-definite kernels; discrete and continuous RKHS; kernel engineering and scaling maps; error assessment via kernel discrepancy/maximum mean discrepancy (MMD); and a systematic operator view of kernels. In this viewpoint, projection, gradient, divergence, and Laplace-Beltrami operators are built directly from kernels, enabling discrete analogues of differential operators and variational tools that connect learning with PDE-style modeling. Part II turns to practice across four domains. In machine learning, we treat supervised and unsupervised tasks, then develop RKHS-based generative modeling, contrasting density and projection approaches and enhancing them with OT and scalable, combinatorial assignments. We introduce clustering strategies that reduce computational burden and support large-scale regression and transport. In physics-informed modeling, we present mesh-free kernel discretizations for elliptic and time-dependent PDEs, discuss automatic differentiation, and propose high-order discrete approximations. In reinforcement learning, we formulate kernel Q-learning and non-parametric HJB methods, and show how kernel operators yield sample-efficient baselines on continuous-state, discrete-action tasks. In mathematical finance, we build nonparametric time-series models and market generators, study benchmarking and extrapolation for pricing, and apply the framework to stress testing and portfolio methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
323+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
81+阅读 · 2020年7月26日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
45+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
详述DeepMind wavenet原理及其TensorFlow实现
深度学习每日摘要
12+阅读 · 2017年6月26日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
45+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员