The majority of research in both training Artificial Neural Networks (ANNs) and modeling learning in biological brains focuses on synaptic plasticity, where learning equates to changing the strength of existing connections. However, in biological brains, structural plasticity - where new connections are created and others removed - is also vital, not only for effective learning but also for recovery from damage and optimal resource usage. Inspired by structural plasticity, pruning is often used in machine learning to remove weak connections from trained models to reduce the computational requirements of inference. However, the machine learning frameworks typically used for backpropagation-based training of both ANNs and Spiking Neural Networks (SNNs) are optimized for dense connectivity, meaning that pruning does not help reduce the training costs of ever-larger models. The GeNN simulator already supports efficient GPU-accelerated simulation of sparse SNNs for computational neuroscience and machine learning. Here, we present a new flexible framework for implementing GPU-accelerated structural plasticity rules and demonstrate this first using the e-prop supervised learning rule and DEEP R to train efficient, sparse SNN classifiers and then, in an unsupervised learning context, to learn topographic maps. Compared to baseline dense models, our sparse classifiers reduce training time by up to 10x while the DEEP R rewiring enables them to perform as well as the original models. We demonstrate topographic map formation in faster-than-realtime simulations, provide insights into the connectivity evolution, and measure simulation speed versus network size. The proposed framework will enable further research into achieving and maintaining sparsity in network structure and neural communication, as well as exploring the computational benefits of sparsity in a range of neuromorphic applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员