Graph analytics attract much attention from both research and industry communities. Due to the linear time complexity, the $k$-core decomposition is widely used in many real-world applications such as biology, social networks, community detection, ecology, and information spreading. In many such applications, the data graphs continuously change over time. The changes correspond to edge insertion and removal. Instead of recomputing the $k$-core, which is time-consuming, we study how to maintain the $k$-core efficiently. That is, when inserting or deleting an edge, we need to identify the affected vertices by searching for more vertices. The state-of-the-art order-based method maintains an order, the so-called $k$-order, among all vertices, which can significantly reduce the searching space. However, this order-based method is complicated for understanding and implementation, and its correctness is not formally discussed. In this work, we propose a simplified order-based approach by introducing the classical Order Data Structure to maintain the $k$-order, which significantly improves the worst-case time complexity for both edge insertion and removal algorithms. Also, our simplified method is intuitive to understand and implement; it is easy to argue the correctness formally. Additionally, we discuss a simplified batch insertion approach. The experiments evaluate our simplified method over 12 real and synthetic graphs with billions of vertices. Compared with the existing method, our simplified approach achieves high speedups up to 7.7x and 9.7x for edge insertion and removal, respectively.


翻译:图表分析吸引了研究和产业界的注意力。 由于时间的线性复杂性, 美元核心分解在生物学、 社交网络、 社区检测、 生态和信息传播等许多真实世界的应用中被广泛使用。 在许多这样的应用中, 数据图表会随着时间的变化而不断变化。 这些变化与边缘插入和删除相对应。 这种基于秩序的方法对于理解和执行来说比较复杂,而且没有正式讨论这种方法的正确性。 在这项工作中, 我们建议采用基于秩序的简化方法, 采用经典秩序数据结构来维持美元水平的分流, 从而大大改进基于秩序的分流。 基于秩序的状态方法在生物学、 社会网络、 社区检测、 以及信息传播信息传播等方面都维持着秩序。 最糟糕的分流速度, 使用最简化的分流方法, 使用最简化的分流方法, 并使用更简化的分流法, 使用更简化的分流法, 使用更精确的分解法, 使用更精确的分解法, 使用更简化的分解法, 进行更精确的分解。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员