Ordinary differential equations (ODEs), via their induced flow maps, provide a powerful framework to parameterize invertible transformations for the purpose of representing complex probability distributions. While such models have achieved enormous success in machine learning, particularly for generative modeling and density estimation, little is known about their statistical properties. This work establishes the first general nonparametric statistical convergence analysis for distribution learning via ODE models trained through likelihood maximization. We first prove a convergence theorem applicable to arbitrary velocity field classes $\mathcal{F}$ satisfying certain simple boundary constraints. This general result captures the trade-off between approximation error (`bias') and the complexity of the ODE model (`variance'). We show that the latter can be quantified via the $C^1$-metric entropy of the class $\mathcal F$. We then apply this general framework to the setting of $C^k$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $\mathcal F$: $C^k$ functions and neural networks. The latter is the practically important case of neural ODEs. Our proof techniques require a careful synthesis of (i) analytical stability results for ODEs, (ii) classical theory for sieved M-estimators, and (iii) recent results on approximation rates and metric entropies of neural network classes. The results also provide theoretical insight on how the choice of velocity field class, and the dependence of this choice on sample size $n$ (e.g., the scaling of width, depth, and sparsity of neural network classes), impacts statistical performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员