Many problems can be formulated as high-dimensional integrals of discontinuous functions that often exhibit significant growth, challenging the error analysis of randomized quasi-Monte Carlo (RQMC) methods. This paper studies RQMC methods for functions with generalized exponential growth conditions, with a special focus on financial derivative pricing. The main contribution of this work is threefold. First, by combining RQMC and importance sampling (IS) techniques, we derive a new error bound for a class of integrands with the critical growth condition $e^{A\|\boldsymbol{x}\|^2}$ where $A = 1/2$. This theory extends existing results in the literature, which are limited to the case $A < 1/2$, and we demonstrate that by imposing a light-tail condition on the proposal distribution in the IS, the RQMC method can maintain its high-efficiency convergence rate even in this critical growth scenario. Second, we verify that the Gaussian proposals used in Optimal Drift Importance Sampling (ODIS) satisfy the required light-tail condition, providing rigorous theoretical guarantees for RQMC-ODIS in critical growth scenarios. Third, for discontinuous integrands from finance, we combine the preintegration technique with RQMC-IS. We prove that this integrand after preintegration preserves the exponential growth condition. This ensures that the preintegrated discontinuous functions can be seamlessly incorporated into our RQMC-IS convergence framework. Finally, numerical results validate our theory, showing that the proposed method is effective in handling these problems with discontinuous payoffs, successfully achieving the expected convergence rates.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员