Reliable broadcast and consensus are the two pillars that support a lot of non-trivial fault-tolerant distributed middleware and fault-tolerant distributed systems. While they have close definitions, they strongly differ in the underlying assumptions needed to implement each of them. Reliable broadcast can be implemented in asynchronous systems in the presence of crash or Byzantine failures while Consensus cannot. This key difference stems from the fact that consensus involves synchronization between multiple processes that concurrently propose values, while reliable broadcast simply involves delivering a message from a predefined sender. This paper strikes a balance between these two agreement abstractions in the presence of Byzantine failures. It proposes CAC, a novel agreement abstraction that enables multiple processes to broadcast messages simultaneously, while guaranteeing that (despite potential conflicts, asynchrony, and Byzantine behaviors) the non-faulty processes will agree on messages deliveries. We show that this novel abstraction can enable more efficient algorithms for a variety of applications (such as money transfer where several people can share a same account). This is obtained by focusing the need for synchronization only on the processes that actually need to synchronize.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月5日
Arxiv
0+阅读 · 2024年1月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年1月5日
Arxiv
0+阅读 · 2024年1月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员