Identifying informative tweets is an important step when building information extraction systems based on social media. WNUT-2020 Task 2 was organised to recognise informative tweets from noise tweets. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves 10th place in the final rankings scoring 0.9004 F1 score for the test set.


翻译:在建立基于社交媒体的信息提取系统时,识别信息性推文是一个重要的步骤。 WNUT-2020任务2旨在识别来自噪音推文的信息性推文。 在本文中,我们展示了我们利用变压器实现任务目标的方法。 总体而言,我们的方法在最后排名中位居第10位,测试集得分为0.9004 F1。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
AlphaZero原理与启示
专知会员服务
33+阅读 · 2020年8月23日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
VIP会员
相关VIP内容
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Top
微信扫码咨询专知VIP会员