In including random effects to account for dependent observations, the odds ratio interpretation of logistic regression coefficients is changed from population-averaged to subject-specific. This is unappealing in many applications, motivating a rich literature on methods that maintain the marginal logistic regression structure without random effects, such as generalized estimating equations. However, for spatial data, random effect approaches are appealing in providing a full probabilistic characterization of the data that can be used for prediction. We propose a new class of spatial logistic regression models that maintain both population-averaged and subject-specific interpretations through a novel class of bridge processes for spatial random effects. These processes are shown to have appealing computational and theoretical properties, including a scale mixture of normal representation. The new methodology is illustrated with simulations and an analysis of childhood malaria prevalence data in the Gambia.


翻译:在引入随机效应以处理观测值间的依赖性时,逻辑回归系数的比值比解释从总体平均型转变为个体特定型。这在许多应用中并不理想,从而推动了大量关于在无随机效应情况下保持边际逻辑回归结构的方法研究,例如广义估计方程。然而,对于空间数据,随机效应方法因其能够提供可用于预测的数据的完整概率表征而具有吸引力。我们提出了一类新的空间逻辑回归模型,通过一类新颖的空间随机效应桥过程,同时保持总体平均和个体特定两种解释。这些过程被证明具有吸引人的计算和理论性质,包括正态表示的尺度混合形式。新方法通过模拟研究以及对冈比亚儿童疟疾患病率数据的分析进行了验证。

0
下载
关闭预览

相关内容

逻辑回归(也称“对数几率回归”)(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。在统计学中,logistic模型(或logit模型)用于对存在的某个类或事件的概率建模,例如通过/失败、赢/输、活着/死了或健康/生病。这可以扩展到建模若干类事件,如确定一个图像是否包含猫、狗、狮子等。图像中检测到的每个物体的概率都在0到1之间,其和为1。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员