Efficient parallel computing has become a pivotal element in advancing artificial intelligence. Yet, the deployment of Spiking Neural Networks (SNNs) in this domain is hampered by their inherent sequential computational dependency. This constraint arises from the need for each time step's processing to rely on the preceding step's outcomes, significantly impeding the adaptability of SNN models to massively parallel computing environments. Addressing this challenge, our paper introduces the innovative Parallel Spiking Unit (PSU) and its two derivatives, the Input-aware PSU (IPSU) and Reset-aware PSU (RPSU). These variants skillfully decouple the leaky integration and firing mechanisms in spiking neurons while probabilistically managing the reset process. By preserving the fundamental computational attributes of the spiking neuron model, our approach enables the concurrent computation of all membrane potential instances within the SNN, facilitating parallel spike output generation and substantially enhancing computational efficiency. Comprehensive testing across various datasets, including static and sequential images, Dynamic Vision Sensor (DVS) data, and speech datasets, demonstrates that the PSU and its variants not only significantly boost performance and simulation speed but also augment the energy efficiency of SNNs through enhanced sparsity in neural activity. These advancements underscore the potential of our method in revolutionizing SNN deployment for high-performance parallel computing applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

PARCO:Parallel Computing。 Explanation:并行计算。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/conf/parco/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员