This paper presents \textsc{Luca}, a \underline{l}arge language model (LLM)-\underline{u}pgraded graph reinforcement learning framework for \underline{c}arbon-\underline{a}ware flexible job shop scheduling. \textsc{Luca} addresses the challenges of dynamic and sustainable scheduling in smart manufacturing systems by integrating a graph neural network and an LLM, guided by a carefully designed in-house prompting strategy, to produce a fused embedding that captures both structural characteristics and contextual semantics of the latest scheduling state. This expressive embedding is then processed by a deep reinforcement learning policy network, which generates real-time scheduling decisions optimized for both makespan and carbon emission objectives. To support sustainability goals, \textsc{Luca} incorporates a dual-objective reward function that encourages both energy efficiency and scheduling timeliness. Experimental results on both synthetic and public datasets demonstrate that \textsc{Luca} consistently outperforms comparison algorithms. For instance, on the synthetic dataset, it achieves an average of 4.1\% and up to 12.2\% lower makespan compared to the best-performing comparison algorithm while maintaining the same emission level. On public datasets, additional gains are observed for both makespan and emission. These results demonstrate that \textsc{Luca} is effective and practical for carbon-aware scheduling in smart manufacturing.


翻译:本文提出\\textsc{Luca},一种基于\\underline{l}大语言模型(LLM)\\underline{u}升级的图强化学习框架,用于\\underline{c}碳\\underline{a}感知的柔性作业车间调度。\\textsc{Luca}通过集成图神经网络与LLM,并辅以精心设计的内部提示策略,生成融合嵌入,以捕捉最新调度状态的结构特征与上下文语义,从而应对智能制造系统中动态与可持续调度的挑战。该表达性嵌入随后由深度强化学习策略网络处理,生成针对完工时间和碳排放目标优化的实时调度决策。为支持可持续性目标,\\textsc{Luca}采用双目标奖励函数,同时鼓励能源效率与调度时效性。在合成与公开数据集上的实验结果表明,\\textsc{Luca}始终优于对比算法。例如,在合成数据集上,与性能最佳的对比算法相比,其在保持相同排放水平的同时,平均降低完工时间4.1%,最高可达12.2%。在公开数据集上,完工时间与排放方面均观察到额外增益。这些结果证明\\textsc{Luca}在智能制造中的碳感知调度方面是有效且实用的。

0
下载
关闭预览

相关内容

ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员