Recent advances in the development of robotic foundation models have led to promising end-to-end and general-purpose capabilities in robotic systems. Trained on vast datasets of simulated and real-world trajectories, these models map multimodal observations directly to action sequences for physical execution. Despite promising real-world capabilities, these models are still data-driven and, therefore, lack explicit notions of behavioral correctness. We address this gap by introducing SafeDec, a constrained decoding framework for autoregressive, robot foundation models that enforces invariant safety specifications on candidate action trajectories. Task-specific safety rules are expressed as Signal Temporal Logic (STL) formulas and are enforced at inference time with minimal overhead. Our method ensures that generated actions provably satisfy STL specifications under assumed dynamics at runtime without retraining , while remaining agnostic of the underlying policy. We evaluate SafeDec on tasks from the CHORES benchmark for state-of-the-art generalist policies (e.g., SPOC, Flare, PoliFormer) across hundreds of procedurally generated environments and show that our decoding-time interventions are useful not only for filtering unsafe actions but also for conditional action generation. Videos are available at constrained-robot-fms.github.io.
翻译:暂无翻译