How to effectively explore semantic feature is vital for low-light image enhancement (LLE). Existing methods usually utilize the semantic feature that is only drawn from the output produced by high-level semantic segmentation (SS) network. However, if the output is not accurately estimated, it would affect the high-level semantic feature (HSF) extraction, which accordingly interferes with LLE. To this end, we develop a simple and effective semantic-aware LLE network (SSLEN) composed of a LLE main-network (LLEmN) and a SS auxiliary-network (SSaN). In SLLEN, LLEmN integrates the random intermediate embedding feature (IEF), i.e., the information extracted from the intermediate layer of SSaN, together with the HSF into a unified framework for better LLE. SSaN is designed to act as a SS role to provide HSF and IEF. Moreover, thanks to a shared encoder between LLEmN and SSaN, we further propose an alternating training mechanism to facilitate the collaboration between them. Unlike currently available approaches, the proposed SLLEN is able to fully lever the semantic information, e.g., IEF, HSF, and SS dataset, to assist LLE, thereby leading to a more promising enhancement performance. Comparisons between the proposed SLLEN and other state-of-the-art techniques demonstrate the superiority of SLLEN with respect to LLE quality over all the comparable alternatives.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Locally linear embedding(LLE) 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年6月29日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员