Multivariate (average) equivalence testing is widely used to assess whether the means of two conditions of interest are `equivalent' for different outcomes simultaneously. The multivariate Two One-Sided Tests (TOST) procedure is typically used in this context by checking if, outcome by outcome, the marginal $100(1-2\alpha$)\% confidence intervals for the difference in means between the two conditions of interest lie within pre-defined lower and upper equivalence limits. This procedure, known to be conservative in the univariate case, leads to a rapid power loss when the number of outcomes increases, especially when one or more outcome variances are relatively large. In this work, we propose a finite-sample adjustment for this procedure, the multivariate $\alpha$-TOST, that consists in a correction of $\alpha$, the significance level, taking the (arbitrary) dependence between the outcomes of interest into account and making it uniformly more powerful than the conventional multivariate TOST. We present an iterative algorithm allowing to efficiently define $\alpha^{\star}$, the corrected significance level, a task that proves challenging in the multivariate setting due to the inter-relationship between $\alpha^{\star}$ and the sets of values belonging to the null hypothesis space and defining the test size. We study the operating characteristics of the multivariate $\alpha$-TOST both theoretically and via an extensive simulation study considering cases relevant for real-world analyses -- i.e.,~relatively small sample sizes, unknown and heterogeneous variances, and different correlation structures -- and show the superior finite-sample properties of the multivariate $\alpha$-TOST compared to its conventional counterpart. We finally re-visit a case study on ticlopidine hydrochloride and compare both methods when simultaneously assessing bioequivalence for multiple pharmacokinetic parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员