We give a scenario-based treatment plan optimization formulation that is equivalent to planning with geometric margins if the scenario doses are calculated using the static dose cloud approximation. If the scenario doses are instead calculated more accurately, then our formulation provides a novel robust planning method that overcomes many of the difficulties associated with previous scenario-based robust planning methods. In particular, our method protects only against uncertainties that can occur in practice, it gives a sharp dose fall-off outside high dose regions, and it avoids underdosage of the target in ``easy'' scenarios. The method shares the benefits of the previous scenario-based robust planning methods over geometric margins for applications where the static dose cloud approximation is inaccurate, such as irradiation with few fields and irradiation with ion beams. These properties are demonstrated on a suite of phantom cases planned for treatment with scanned proton beams subject to systematic setup uncertainty.


翻译:我们给出一种基于情景的治疗计划优化配方,如果使用静剂量云近似值来计算假设情景剂量,就相当于用几何边规划。如果假设情景剂量的计算更为准确,那么我们的配方就提供了一种新的稳健的规划方法,克服了以往基于情景的稳健规划方法带来的许多困难。特别是,我们的方法只能防止实际中可能出现的不确定因素,在高剂量区域之外会发生急性剂量下降,并避免在“塞塞”情景中发生目标误入。这种方法分享了先前基于情景的稳健规划方法对静剂量云近似值不准确的应用的几何边的惠益,例如对少数田地的辐照和对离子束的辐照。这些特性在计划用扫描质波束进行处理的一组幻象病例中展示,这些特性取决于系统设置的不确定性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Large-Scale Study of Curiosity-Driven Learning
Arxiv
8+阅读 · 2018年8月13日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员