Online services rely on CAPTCHAs as a first line of defense against automated abuse, yet recent advances in multi-modal large language models (MLLMs) have eroded the effectiveness of conventional designs that focus on text recognition or 2D image understanding. To address this challenge, we present Spatial CAPTCHA, a novel human-verification framework that leverages fundamental differences in spatial reasoning between humans and MLLMs. Unlike existing CAPTCHAs which rely on low-level perception tasks that are vulnerable to modern AI, Spatial CAPTCHA generates dynamic questions requiring geometric reasoning, perspective-taking, occlusion handling, and mental rotation. These skills are intuitive for humans but difficult for state-of-the-art (SOTA) AI systems. The system employs a procedural generation pipeline with constraint-based difficulty control, automated correctness verification, and human-in-the-loop validation to ensure scalability, robustness, and adaptability. Evaluation on a corresponding benchmark, Spatial-CAPTCHA-Bench, demonstrates that humans vastly outperform 10 state-of-the-art MLLMs, with the best model achieving only 31.0% Pass@1 accuracy. Furthermore, we compare Spatial CAPTCHA with Google reCAPTCHA, which confirms its effectiveness as both a security mechanism and a diagnostic tool for spatial reasoning in AI.
翻译:暂无翻译