In this article, we investigate the robust optimal design problem for the prediction of response when the fitted regression models are only approximately specified, and observations might be missing completely at random. The intuitive idea is as follows: We assume that data are missing at random, and the complete case analysis is applied. To account for the occurrence of missing data, the design criterion we choose is the mean, for the missing indicator, of the averaged (over the design space) mean squared errors of the predictions. To describe the uncertainty in the specification of the real underlying model, we impose a neighborhood structure on the deterministic part of the regression response and maximize, analytically, the \textbf{M}ean of the averaged \textbf{M}ean squared \textbf{P}rediction \textbf{E}rrors (MMPE), over the entire neighborhood. The maximized MMPE is the ``worst'' loss in the neighborhood of the fitted regression model. Minimizing the maximum MMPE over the class of designs, we obtain robust ``minimax'' designs. The robust designs constructed afford protection from increases in prediction errors resulting from model misspecifications.


翻译:在本篇文章中,我们调查了在安装的回归模型仅大致指定时预测响应的稳妥最佳设计问题,而观测可能完全随机缺失。 直观想法如下: 我们假设数据随机丢失, 并应用完整的案例分析。 为了计算缺失数据的发生情况, 我们选择的设计标准是平均( 超过设计空间) 表示预测的平方差的平均值。 为了描述真实基础模型规格的不确定性, 我们为回归反应的确定性部分设置了邻里结构, 并且从分析角度将平均的\ textbf{M}Ean 的\ textbf{M}Ean 平方形 {P} { textbf{E}rrors (MMAPE) 最大化。 最优化的 MMPE 是合适的回归模型附近“worstt” 损失。 将最大 MMPE 限制在设计类别上, 我们从错误的预测中获取了稳健的精确度 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员