We present a novel approach to address the multi-agent sparse contextual linear bandit problem, in which the feature vectors have a high dimension $d$ whereas the reward function depends on only a limited set of features - precisely $s_0 \ll d$. Furthermore, the learning follows under information-sharing constraints. The proposed method employs Lasso regression for dimension reduction, allowing each agent to independently estimate an approximate set of main dimensions and share that information with others depending on the network's structure. The information is then aggregated through a specific process and shared with all agents. Each agent then resolves the problem with ridge regression focusing solely on the extracted dimensions. We represent algorithms for both a star-shaped network and a peer-to-peer network. The approaches effectively reduce communication costs while ensuring minimal cumulative regret per agent. Theoretically, we show that our proposed methods have a regret bound of order $\mathcal{O}(s_0 \log d + s_0 \sqrt{T})$ with high probability, where $T$ is the time horizon. To our best knowledge, it is the first algorithm that tackles row-wise distributed data in sparse linear bandits, achieving comparable performance compared to the state-of-the-art single and multi-agent methods. Besides, it is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret. To validate the effectiveness of our approach, we present experimental results on both synthetic and real-world datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员