The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individual behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats' narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the government's role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties' narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the "elusive consensus" between the two parties. Our methodologies may be applied to computationally study narratives in various domains.


翻译:COVID-19大流行是一个全球性的危机,它一直在考验每个社会,暴露了地方政治在应对危机中的关键作用。在美国,存在强烈的党派分歧,导致个人行为两极分化,各地区采取不同的政策。在这里,为了更好地理解这种分歧,我们用新的计算方法,包括计算框架分析和语义作用分析,对民主党和共和党政治家在社交媒体上的流行描述进行定性和比较。通过分析美国政治家,包括总统、国会议员和州州长的推文,我们系统地揭示了影响其叙事的主题、框架和代理人的对比性叙述。我们发现,民主党的叙事往往更关心这种流行病以及财政和社会支持,而共和党则更多地讨论其他政治实体,如中国。民主党通过使用对比框架和语义作用分析,强调政府在应对该流行病方面的作用,共和党强调个人的作用,支持小企业。两党的叙事说明中还包括“在我们的叙事研究中呼喊出自己的追随者,并指责我们其他政党在计算方法上存在两种差距。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
ViZDoom Competitions: Playing Doom from Pixels
Arxiv
5+阅读 · 2018年9月10日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员