We consider the multiwinner election problem where the goal is to choose a committee of $k$ candidates given the voters' utility functions. We allow arbitrary additional constraints on the chosen committee, and the utilities of voters to belong to a very general class of set functions called $\beta$-self bounding. When $\beta=1$, this class includes XOS (and hence, submodular and additive) utilities. We define a novel generalization of core stability called restrained core to handle constraints and consider multiplicative approximations on the utility under this notion. Our main result is the following: If a smooth version of Nash Welfare is globally optimized over committees within the constraints, the resulting committee lies in the $e^{\beta}$-approximate restrained core for $\beta$-self bounding utilities and arbitrary constraints. As a result, we obtain the first constant approximation for stability with arbitrary additional constraints even for additive utilities (factor of $e$), and the first analysis of the stability of Nash Welfare with XOS functions even with no constraints. We complement this positive result by showing that the $c$-approximate restrained core can be empty for $c<16/15$ even for approval utilities and one additional constraint. Furthermore, the exponential dependence on $\beta$ in the approximation is unavoidable for $\beta$-self bounding functions even with no constraints. We next present improved and tight approximation results for simpler classes of utility functions and simpler types of constraints. We also present an extension of restrained core to extended justified representation with constraints and show an existence result for matroid constraints. We finally generalize our results to the setting with arbitrary-size candidates and no additional constraints. Our techniques are different from previous analyses and are of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员