This paper introduces a novel dataset for video enhancement and studies the state-of-the-art methods of the NTIRE 2021 challenge on quality enhancement of compressed video. The challenge is the first NTIRE challenge in this direction, with three competitions, hundreds of participants and tens of proposed solutions. Our newly collected Large-scale Diverse Video (LDV) dataset is employed in the challenge. In our study, we analyze the proposed methods of the challenge and several methods in previous works on the proposed LDV dataset. We find that the NTIRE 2021 challenge advances the state-of-the-art of quality enhancement on compressed video. The proposed LDV dataset is publicly available at the homepage of the challenge: https://github.com/RenYang-home/NTIRE21_VEnh


翻译:本文介绍了用于加强视频的新数据集,并研究了2021年国家电视网在提高压缩视频质量方面最先进的方法,这是国家电视网在提高压缩视频质量方面的第一个挑战,它有三个竞赛、几百名参与者和数十个拟议解决方案,我们新收集的大型多样化视频数据集用于应对挑战。我们的研究分析了拟议的挑战方法和以往关于拟议的LDV数据集的工作的一些方法。我们发现,2021年国家电视网在提高压缩视频质量方面提出了最先进的方法。提议的LDV数据集可在挑战的主页上公开查阅:https://github.com/RenYang-home/NTRE21_Venh。

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年5月1日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
6+阅读 · 2018年4月23日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
相关论文
Arxiv
16+阅读 · 2021年1月27日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
6+阅读 · 2018年4月23日
Top
微信扫码咨询专知VIP会员