Even nowadays, where Deep Learning (DL) has achieved state-of-the-art performance in a wide range of research domains, accelerating training and building robust DL models remains a challenging task. To this end, generations of researchers have pursued to develop robust methods for training DL architectures that can be less sensitive to weight distributions, model architectures and loss landscapes. However, such methods are limited to adaptive learning rate optimizers, initialization schemes, and clipping gradients without investigating the fundamental rule of parameters update. Although multiplicative updates have contributed significantly to the early development of machine learning and hold strong theoretical claims, to best of our knowledge, this is the first work that investigate them in context of DL training acceleration and robustness. In this work, we propose an optimization framework that fits to a wide range of optimization algorithms and enables one to apply alternative update rules. To this end, we propose a novel multiplicative update rule and we extend their capabilities by combining it with a traditional additive update term, under a novel hybrid update method. We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule and we experimentally demonstrate their effectiveness in a wide range of task and optimization methods. Such tasks ranging from convex and non-convex optimization to difficult image classification benchmarks applying a wide range of traditionally used optimization methods and Deep Neural Network (DNN) architectures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员