Many recent practical and theoretical breakthroughs focus on adversarial team multi-player games (ATMGs) in ex ante correlation scenarios. In this setting, team members are allowed to coordinate their strategies only before the game starts. Although there existing algorithms for solving extensive-form ATMGs, the size of the game tree generated by the previous algorithms grows exponentially with the number of players. Therefore, how to deal with large-scale zero-sum extensive-form ATMGs problems close to the real world is still a significant challenge. In this paper, we propose a generic multi-player transformation algorithm, which can transform any multi-player game tree satisfying the definition of AMTGs into a 2-player game tree, such that finding a team-maxmin equilibrium with correlation (TMECor) in large-scale ATMGs can be transformed into solving NE in 2-player games. To achieve this goal, we first introduce a new structure named private information pre-branch, which consists of a temporary chance node and coordinator nodes and aims to make decisions for all potential private information on behalf of the team members. We also show theoretically that NE in the transformed 2-player game is equivalent TMECor in the original multi-player game. This work significantly reduces the growth of action space and nodes from exponential to constant level. This enables our work to outperform all the previous state-of-the-art algorithms in finding a TMECor, with 182.89, 168.47, 694.44, and 233.98 significant improvements in the different Kuhn Poker and Leduc Poker cases (21K3, 21K4, 21K6 and 21L33). In addition, this work first practically solves the ATMGs in a 5-player case which cannot be conducted by existing algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员