In modern online streaming platforms, the comments section plays a critical role in enhancing the overall user experience. Understanding user behavior within the comments section is essential for comprehensive user interest modeling. A key factor of user engagement is staytime, which refers to the amount of time that users browse and post comments. Existing watchtime prediction methods struggle to adapt to staytime prediction, overlooking interactions with individual comments and their interrelation. In this paper, we present a micro-video recommendation dataset with video comments (named as KuaiComt) which is collected from Kuaishou platform. correspondingly, we propose a practical framework for comment staytime prediction with LLM-enhanced Comment Understanding (LCU). Our framework leverages the strong text comprehension capabilities of large language models (LLMs) to understand textual information of comments, while also incorporating fine-grained comment ranking signals as auxiliary tasks. The framework is two-staged: first, the LLM is fine-tuned using domain-specific tasks to bridge the video and the comments; second, we incorporate the LLM outputs into the prediction model and design two comment ranking auxiliary tasks to better understand user preference. Extensive offline experiments demonstrate the effectiveness of our framework, showing significant improvements on the task of comment staytime prediction. Additionally, online A/B testing further validates the practical benefits on industrial scenario. Our dataset KuaiComt (https://github.com/lyingCS/KuaiComt.github.io) and code for LCU (https://github.com/lyingCS/LCU) are fully released.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员