We show that the dominating set problem admits a constant factor approximation in a constant number of rounds in the LOCAL model of distributed computing on graph classes with bounded expansion. This generalizes a result of Czygrinow et al. for graphs with excluded topological minors to very general classes of uniformly sparse graphs. We demonstrate how our general algorithm can be modified and fine-tuned to compute an ($11+\epsilon$)-approximation (for any $\epsilon>0)$ of a minimum dominating set on planar graphs. This improves on the previously best known approximation factor of 52 on planar graphs, which was achieved by an elegant and simple algorithm of Lenzen et al.


翻译:我们显示,占支配地位的设定问题在LOCAL模型中,在分布式计算图类的分布式计算模型中,在固定的几轮中都承认一个恒定的系数近似值。这概括了Czygrinow等人的结果,用于将具有排他性的表层未成年人的图表改成非常普通的稀有图类。我们展示了如何修改和微调我们的一般算法,以计算平面图上最起码占支配地位的美元($\epsilon>0)的11 ⁇ epsilon-approcimation($@0)。这改善了平面图上原先最已知的52的近似系数,这是通过Lenzen等人的优雅而简单的算法实现的。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月24日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员