Advancements in large language models (LLMs) are poised to spark a proliferation of LLM-powered user experiences. In product teams, designers are often tasked with crafting user experiences that align with user needs. To involve designers and leverage their user-centered perspectives to create effective and responsible LLM-powered products, we introduce the practice of designerly adaptation for engaging with LLMs as an adaptable design material. We first identify key characteristics of designerly adaptation through a formative study with designers experienced in designing for LLM-powered products (N=12). These characteristics are 1) have a low technical barrier to entry, 2) leverage designers' unique perspectives bridging users and technology, and 3) encourage model tinkering. Based on this characterization, we build Canvil, a Figma widget that operationalizes designerly adaptation. Canvil supports structured authoring of system prompts to adapt LLM behavior, testing of adapted models on diverse user inputs, and integration of model outputs into interface designs. We use Canvil as a technology probe in a group-based design study (6 groups, N=17) to investigate the implications of integrating designerly adaptation into design workflows. We find that designers are able to iteratively tinker with different adaptation approaches and reason about interface affordances to enhance end-user interaction with LLMs. Furthermore, designers identified promising collaborative workflows for designerly adaptation. Our work opens new avenues for collaborative processes and tools that foreground designers' user-centered expertise in the crafting and deployment of LLM-powered user experiences.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员