Autonomous high-speed navigation through large, complex environments requires real-time generation of agile trajectories that are dynamically feasible, collision-free, and satisfy state or actuator constraints. Modern trajectory planning techniques primarily use numerical optimization, as they enable the systematic computation of high-quality, expressive trajectories that satisfy various constraints. However, stringent requirements on computation time and the risk of numerical instability can limit the use of optimization-based planners in safety-critical scenarios. This work presents an optimization-free planning framework called STITCHER that stitches short trajectory segments together with graph search to compute long-range, expressive, and near-optimal trajectories in real-time. STITCHER outperforms modern optimization-based planners through our innovative planning architecture and several algorithmic developments that make real-time planning possible. Extensive simulation testing is performed to analyze the algorithmic components that make up STITCHER, along with a thorough comparison with two state-of-the-art optimization planners. Simulation tests show that safe trajectories can be created within a few milliseconds for paths that span the entirety of two 50 m x 50 m environments. Hardware tests with a custom quadrotor verify that STITCHER can produce trackable paths in real-time while respecting nonconvex constraints, such as limits on tilt angle and motor forces, which are otherwise hard to include in optimization-based planners.
翻译:暂无翻译