We study zombies and survivor, a variant of the game of cops and robber on graphs. In this variant, the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The zombies are restricted, on their turn, to always follow an edge of a shortest path towards the survivor. Let $z(G)$ be the smallest number of zombies required to catch the survivor on a graph $G$ with $n$ vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that $z(G) = \Theta(n)$. We also show that there exist maximum-degree-$3$ outerplanar graphs such that $z(G) = \Omega\left(n/\log(n)\right)$. Let $z_L(G)$ be the smallest number of lazy zombies (zombies that can stay still on their turn) required to catch the survivor on a graph $G$. We establish that lazy zombies are more powerful than normal zombies but less powerful than cops. We prove that $z_L(G) = 2$ for connected outerplanar graphs. We show that $z_L(G)\leq k$ for connected graphs with treedepth $k$. This result implies that $z_L(G)$ is at most $(k+1)\log n$ for connected graphs with treewidth $k$, $O(\sqrt{n})$ for connected planar graphs, $O(\sqrt{gn})$ for connected graphs with genus $g$ and $O(h\sqrt{hn})$ for connected graphs with any excluded $h$-vertex minor. Our results on lazy zombies still hold when an adversary chooses the initial positions of the zombies.


翻译:我们研究僵尸和幸存者,这是警察游戏和强盗游戏的变体。在这个变体中,独生者扮演强盗的角色,试图逃离充当警察角色的僵尸。僵尸被限制在通往幸存者的最短路径的边缘。让z(G)$(G)成为在一张图上用$n元的悬念捕获幸存者所需的最小僵尸数量。我们显示,存在外部平面图和简单多边形的可见度图,例如,z(G)$=\Theta(n)美元。我们还显示,有最高度-度-3美元的外平面图,因此,z(G)==Omegaleft(n/q(n)\q(right)$。让z_(G)成为最小的懒惰性僵尸(Z)数字(可以保持在转基因值的平面图上)的最小数量。我们确认,在数字上,懒制的僵尸数量比正常的平面的平面值要强。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月11日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
49+阅读 · 2020年12月16日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员