Problems based on the structure of graphs -- for example finding cliques, independent sets, or colourings -- are of fundamental importance in classical complexity. It is well motivated to consider similar problems about quantum graphs, which are an operator system generalisation of graphs. Defining well-formulated decision problems for quantum graphs faces several technical challenges, and consequently the connections between quantum graphs and complexity have been underexplored. In this work, we introduce and study the clique problem for quantum graphs. Our approach utilizes a well-known connection between quantum graphs and quantum channels. The inputs for our problems are presented as quantum channels induced by circuits, which implicitly determine a corresponding quantum graph. We also use this approach to reimagine the clique and independent set problems for classical graphs, by taking the inputs to be circuits of deterministic or noisy channels which implicitly determine confusability graphs. We show that, by varying the collection of channels in the language, these give rise to complete problems for the classes $\textsf{NP}$, $\textsf{MA}$, $\textsf{QMA}$, and $\textsf{QMA}(2)$. In this way, we exhibit a classical complexity problem whose natural quantisation is $\textsf{QMA}(2)$, rather than $\textsf{QMA}$, which is commonly assumed. To prove the results in the quantum case, we make use of methods inspired by self-testing. To illustrate the utility of our techniques, we include a new proof of the reduction of $\textsf{QMA}(k)$ to $\textsf{QMA}(2)$ via cliques for quantum graphs. We also study the complexity of a version of the independent set problem for quantum graphs, and provide preliminary evidence that it may be in general weaker in complexity, contrasting to the classical case where the clique and independent set problems are equivalent.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员