The onerous media sharing task prompts resource-constrained media owners to seek help from a cloud platform, i.e., storing media contents in the cloud and letting the cloud do the sharing. There are three key security/privacy problems that need to be solved in the cloud media sharing scenario, including data privacy leakage and access control in the cloud, infringement on the owner's copyright, and infringement on the user's rights. In view of the fact that no single technique can solve the above three problems simultaneously, two cloud media sharing schemes are proposed in this paper, named FairCMS-I and FairCMS-II. By cleverly utilizing the proxy re-encryption technique and the asymmetric fingerprinting technique, FairCMS-I and FairCMS-II solve the above three problems with different privacy/efficiency trade-offs. Among them, FairCMS-I focuses more on cloud-side efficiency while FairCMS-II focuses more on the security of the media content, which provides owners with flexibility of choice. In addition, FairCMS-I and FairCMS-II also have advantages over existing cloud media sharing efforts in terms of optional IND-CPA (indistinguishability under chosen-plaintext attack) security and high cloud-side efficiency, as well as exemption from needing a trusted third party. Furthermore, FairCMS-I and FairCMS-II allow owners to reap significant local resource savings and thus can be seen as the privacy-preserving outsourcing of asymmetric fingerprinting. Finally, the feasibility and efficiency of FairCMS-I and FairCMS-II are demonstrated by experiments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
67+阅读 · 2022年4月13日
Arxiv
14+阅读 · 2020年1月27日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员